Dynamic Network Embedding

Peng Cui
Tsinghua University



Networks are ubiquitous

Social Networks




Networks are ubiquitous

Biology Networks
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Networks are ubiquitous

Finance Networks
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Networks are ubiquitous

Internet of Things
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What is the bottleneck?
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Revisit network representation

G=(V)

Vector Space

O Easy to parallel
O Can apply classical ML methods




The ultimate goal of network embedding
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How?

The vector space should be able to...
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Network Embedding



Network Embedding
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ABSTRACT

Network embedding assigns nodes in a network to low-dimensional representations and effectively preserves the network structure. Recently, a
sighificant amount of progresses have been made toward this emerging network analysis paradigm. In this survey, we focus on categorizing and then
reviewing the current development on network embedding methods, and point out its future research directions. We first summarize the motivation of
network embedding. We discuss the classical graph embedding algorithms and their relationship with network embedding. Afterwards and primarily,
we provide a comprehensive overview of a large number of network embedding methods in a systematic manner, covering the structure- and property-
preserving network embedding methods, the network embedding methods with side information and the advanced information preserving network
embedding methods. Moreover, several evaluation approaches for network embedding and some useful online resources, including the network data
sets and softwares, are reviewed, too. Finally, we discuss the framework of exploiting these network embedding methods to build an effective system

and point out some potential future directions.

Peng Cui, Xiao Wang, Jian Pei, Wenwu Zhu. A Survey on Network Embedding.
IEEE TKDE, 2018.



Dynamic Networks

- Networks are dynamic in nature

- New (old) nodes are added (deleted)
- New users, products, etc.

- The edges between nodes evolve over time

- Users add or delete friends in social networks, or neurons establish new
connections in brain networks.

- How to efficiently incorporate the dynamic changes
when networks evolve?




Key problems in dynamic network embedding

- | : Out-of-sample nodes
- Il : Incremental edges
- Il Aggregated error

- IV: Scalable optimization



Challenge: High-order Proximity

- High-order proximity
- Critical structural property of networks
- Measure indirect relationship between nodes
- Capture the structure of networks with different scales and sparsity
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Challenge: High-order Proximity

| . Out-of-sample nodes
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Key problems in dynamic network embedding

- | : Out-of-sample nodes



Problem
2 To infer embeddings for out-of-sample nodes.

G = (V.E) G' = (V' E)
4 N r - ™\

AR

d G=(V, E) evolves into G=(V’, E’), where V'=V U V*,
d nold nodes: V = {v,,...,v,}, mnew nodes: V* ={V,,1,--,Vpimm}

. J

In-Sample Nodes

A Network embedding: f: V-Rd
O We know f(v) for old nodes, want to infer f(v) for new nodes.



Challenges

) Preserve network structures
- e.g. high-order proximity
-l need to incorporate prior knowledge on networks

) Share similar characteristics with in-sample embeddings
- e.g. magnitude, mean, variance
- requires a model with great expressive power to fit the data well

2 Low computational cost



Specific vs. General

- Specific
2 A new NE algorithm capable of handling OOS nodes.

- General
-1 A solution that helps an arbitrary NE algorithm handle OOS nodes.

-1 We propose a general solution.

-1 But it can be easily integrated into an existing NE algorithm (e.qg.
DeepWalk) to derive a specific algorithm (see the paper).



lterative vs. Analytical

-1 lterative

1 Some algorithms (e.g. DeepWalk) are trained iteratively. It is
possible to incrementally learn embeddings for OOS nodes.

-1 Disadvantage: Must find the proper number of iterations with cross
validation. -> Slow and laborious.

2 Analytical
Q...

1 We want a fast analytical prediction procedure.
- ... so that we can handle OOS nodes without much effort.

1 The training procedure can be iterative, but it must be finished
before new nodes even arrive.



DepthLGP

Nonparametric probabilistic modeling + Deep Learning

Probabilistic Inference
e
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/ Out-of-Sample Nodes

In-Sample Nodes
(y—@F oo o

Deep Neural Network

Jianxin Ma, Peng Cui, Wenwu Zhu. DepthLGP: Learning Embeddings of Out-of-Sample Nodes in
Dynamic Networks. AAAI, 2018.



heories

JThe model can fit arbitrary network embedding.
dThere exists such a set of parameters, such that: ...

Theorem 1 (Expressive Power). For any € > 0, any non-
trivial G = (V,E) and any £ : V — R, there exists a pa-
rameter setting for DepthLGP, such that: for any v* € V,
after deleting all information (except G) related with v*,
DepthLGP can still recover f(v*) with error less than e, by
treating v* as a new node and using Algorithm [ on G.



ask I: Classification

Baselines This Work Upper Bound
Metric Embedding Network LocalAvg MRG LabelProp hLGP DepthLGP  (rerunning)

Macro-F1(%) LINE DBLP 37.89 42.15 40.83 47.33 48.25 (49.07)
PPI 10.52 10.02 12.42 13.42 13.72 (13.91)
BlogCatalog 13.25 11.30 17.07 17.41 18.03 (18.90)
GraRep DBLP 50.61 55.79 55.02 57.43 58.67 (62.92)
PPI 13.65 13.75 12.38 14.80 14.84 (15.33)
BlogCatalog 14.76 14.80 14.71 15.94 18.45 (20.15)
node2vec DBLP 53.83 59.34 59.25 60.89 62.63 (64.87)
PPI 15.05 13.43 13.78 15.85 16.54 (16.81)
BlogCatalog 15.10 14.04 19.16 19.77 20.32 (20.82)
Micro-F1(%) LINE DBLP 49.58 50.49 50.88 54.01 54.94 (55.84)
PPI 18.10 15.71 18.81 20.71 21.42 (21.43)
BlogCatalog 27.40 23.21 30.79 31.36 31.90 (32.20)
GraRep DBLP 60.17 60.62 60.48 61.44 62.29 (65.44)
PPI 20.23 20.35 20.23 20.79 21.44 (21.88)
BlogCatalog 36.44 30.79 33.90 37.57 38.14 (38.37)
node2vec DBLP 60.54 62.29 62.52 62.83 64.56 (65.63)
PPI 19.70 18.25 18.25 22.63 23.11 (23.41)

BlogCatalog 34.83 25.82 36.94 37.96 39.64 (40.34)




ask II: Link Prediction

o

Baselines This Work Upper Bound
Metric  Embedding Network LocalAvg MRG LabelProp hLGP  DepthLGP  (rerunning)

AUC(%) LINE DBLP 72.87 72.87 77.39 80.63 81.18 (82.33)
PPI 52.34 51.78 52.77 57.04 60.45 (60.57)
BlogCatalog 55.51 51.01 5471 54.74 55.53 (55.76)
GraRep DBLP 84.15 85.88 86.32 87.25 87.40 (91.95)
PPI 62.80 68.55 66.48 67.60 68.85 (69.61)
BlogCatalog 45.60 41.24 47.29 47.42 48.11 (48.206)
node2vec DBLP 68.49 76.90 77.98 81.36 82.54 (89.02)
PPI 38.90 40.54 46.79 53.16 55.37 (59.74)

BlogCatalog 54.65 38.41 55.40 5543 55.47 (55.86)




Key problems in dynamic network embedding

-1l - Incremental edges



Problem Formulation

- Suppose that we have learned the node embedding
based on the edges appearing before time t.

- How to efficiently update these node embedding at time
t+ At so that the changed network structure caused by the
newly added/deleted edges during At can be reflected by

the updated node embedding?



The Static Model

- We aim to preserve high-order proximity in the embedding
matrix with the following objective function:

min ||S — UU""||%

- where S denotes the high-order proximity matrix of the network
- Uand U’ is the results of matrix decomposition of S.

- For undirected networks, U and U’ are highly correlated.
- Without loss of generality, we choose U as the embedding matrix.



GSVD

We choose Katz Index as S because it is one of the most
widely used measures of high-order proximity. It can be
formulated as:

skat= — N~ M,

M, = (I — BA)

M, = SA

where [3 is a decay parameter, | is the identity matrix and A is the
adjacency matrix

According to HOPE, the original objective function can be
solved by the generalized SVD (GSVD) method

Mingdong Ou, Peng Cui, Jian Pei, Wenwu Zhu. Asymmetric Transitivity Preserving Graph Embedding. KDD, 2016.



Problem Transformation

For static model, we get the GSVD results of the high-
order proximity matrix as the embedding of nodes.

But it is difficult to incremental updating the GSVD results
directly.

Here we propose to transform the GSVD problem into
generalized eigenvalue problem, so that the incremental
updating is feasible.

Dingyuan Zhu, Peng Cui, Ziwei Zhang, Jian Pei, Wenwu Zhu. High-order Proximity Preserved Embedding For Dynamic
Networks. IEEE TKDE, 2018.



GSVD — Generalized Eigen Problem

- Formally, GSVD can be transformed into the generalized
eigenvalue problem as:

M, 'M,X = AX

A =diag(A, Aa, ... A\N)
l

i

N =0, - sgn(v
X =V

Vi)

- where A are the eigenvalues of S in descending order, and X is a
matrix which contains the corresponding eigenvectors of A, and
sgn() is the Sign function.

Dingyuan Zhu, Peng Cui, Ziwei Zhang, Jian Pei, Wenwu Zhu. High-order Proximity Preserved Embedding For Dynamic
Networks. IEEE TKDE, 2018.



Generalized Eigen Problem — GSVD

- And the results of the generalized eigenvalue problem
can also be transformed back into the results of GSVD
problem:

Vi = X;
a; = |\

vl = X; - sgn( ;)

- where X; is the I-th column of the matrix X, which represents the
corresponding eigenvectors of A..

- Based on the problem transformation, we can update the
results of GSVD by updating the results of generalized
eigenvalue problem.

Dingyuan Zhu, Peng Cui, Ziwei Zhang, Jian Pei, Wenwu Zhu. High-order Proximity Preserved Embedding For Dynamic
Networks. IEEE TKDE, 2018.



Generalized Eigen Perturbation

- We propose generalized eigen perturbation to fulfill the
task.

- The goal of generalized eigen perturbation is to update X® to Xt*1)

- Specifically, given the change of adjacency matrix AA
between two consecutive time steps, the change of Ma
and Mb can be represented as:

AM, = —BAA, and AM,;, = FAA

Dingyuan Zhu, Peng Cui, Ziwei Zhang, Jian Pei, Wenwu Zhu. High-order Proximity Preserved Embedding For Dynamic
Networks. IEEE TKDE, 2018.



Complexity Analysis

- Static Model

- the time complexity of the static model is O(Md”*2L), where M is the
number of edges in the network and L is the iteration number.

- Dynamic Model
- Time complexity: O(T((N+s) d*2+d"4))

- where T is the time slice; N is the number of nodes: s is the number of
changes and d is dimensionality of the embedding.

- Linear with respect to the number of nodes in the network and the
number of the newly edges.

Dingyuan Zhu, Peng Cui, Ziwei Zhang, Jian Pei, Wenwu Zhu. High-order Proximity Preserved Embedding For Dynamic
Networks. IEEE TKDE, 2018.



O Link prediction

Math Dataset

Experiments
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Key problems in dynamic network embedding

- lll: Aggregated error



Problem: Error Accumulation

O Eigen perturbation is at the cost of inducing approximation

SVD
Ao — UO ZO VO
U, Update R
A ~ U | [ 24 vy

U,Update — Error |
Accumulation!

2

Ay Uil |2 Vi

O Problem: error accumulation is inevitable



Solution: SVD Restarts

O Solution: restart SVD occasionally

Ao SV=D Yo 20 Vo
UUpdate

A U, 21 Vi

SVD V

Restart A — Ui 2. :
Upndate

When? U P
At+1 Ut 21 Vi

O What are the appropriate time points?

O Too early restarts: waste of computation resources
O Too late restarts: serious error accumulation



Naive Solution

O Naive solution: fixed time interval or fixed number of changes

O Difficulty: error accumulation is not uniform

O Validated by preliminary studies
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Existing Method

O Existing method: monitor loss (Chen and Candan, KDD 2014)
O Loss in SVD:
J=1IS—=UvT|iz
S: target matrix, [U, Z, V]: results of SVD
O Problem: loss includes approximation error and intrinsic loss in SVD

O Preliminary study results:
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Framework: Monitor Margin

O Observation: the margin between the current loss and intrinsic loss in
SVD is the actual accumulated error

O Currentloss: J = ||S — UZVT||2

. 2
O |Intrinsic loss: £(S, k) = UHZIIH}/”S — Uzt |F ,k: dimensionality

5.5

——Current Loss
s |——Intrinsic Loss in SVD

45

Loss

Intrinsic in SVD

35T

v

3 1 1 1 1 1 'l 1 1 1
0 10 20 30 40 50 60 70 80 920 100
Time Slice

Ziwei Zhang, Peng Cui, Xiao Wang, Jian Pei, Wenwu Zhu. TIMERS: Error-Bounded SVD Restart on Dynamic
Networks. AAAI, 2018.



Framework: Monitor Margin
O Framework: monitor the maximum margin

O Formulation: constrained optimization

T

min E Ct

Cla"'7CT —1

S.t. Q (SQ...ST, [Ut, Et,Vt] , 1 S t S T) S @

O c;: whether to restart; G: evaluating the margin; ©: threshold

T(t) — £(S, k)
Ca<e<r  L(Se, k)

O Intuition: keep the maximum margin within a threshold while reducing
the number of restarts

Ziwei Zhang, Peng Cui, Xiao Wang, Jian Pei, Wenwu Zhu. TIMERS: Error-Bounded SVD Restart on Dynamic
Networks. AAAI, 2018.



A Lower Bound of SVD Intrinsic Loss

O Idea: use matrix perturbation

Theorem 1 (A Lower Bound of SVD Intrinsic Loss). If S
and AS are symmetric matrices, then:

k
L(S+AS,k) > L(S, k) + Atr*(S+ AS,S) =Y N, )
[=1

where A\ > Aa... > \i are the top-k eigenvalues of Vg2 =
S-AS+AS-S+AS - AS, and

Atr*(S+ AS,S) =tr ((S+ AS) - (S+ AS)) —tr(S - S).
O Intuition: treat changes as a perturbation to the original network

O Results: need to calculate top-k eigenvalues of S - AS + AS - S + AS - AS

Ziwei Zhang, Peng Cui, Xiao Wang, Jian Pei, Wenwu Zhu. TIMERS: Error-Bounded SVD Restart on Dynamic
Networks. AAAI, 2018.



Time Complexity Analysis

Theorem 2. The time complexity of calculating B(t) in Eqn
(13)is O(Mgs + Mrk + Nrk?), where Mg is the number of
the non-zero elements in AS, and Ny,, My, are the number
of the non-zero rows and elements in V g2 respectively.

e [fevery node has a equal probability of adding new edges,
we have: M ~ 2d,,,Ms, where d,,, is the average
degree of the network .

e For Barabasi Albert model (Barabasi and Albert 1999), a
typical example of preferential attachment networks, we
have: My, ~ 13 [log(d,nas) + 7] Ms, where d,,q. is the
maximum degree of the network and v ~ 0.58 is a con-
stant.

O Conclusion: the complexity is only linear to the local dynamic changes

Ziwei Zhang, Peng Cui, Xiao Wang, Jian Pei, Wenwu Zhu. TIMERS: Error-Bounded SVD Restart on Dynamic
Networks. AAAI, 2018.



Experimental Setting

0 Baselines:

O Heu-FL: restart SVD after a fixed number of edges changed
O Heu-FT: restart SVD after a fixed amount of time passed

O LWI2 (Chen and Candan, KDD 2014): restart SVD whenever the
reconstruction loss exceeds a preset threshold

O Tasks:

O Approximation error
O Fixed number of restarts
O Fixed maximum error

O Applications
O Link prediction

O Eigenvalue tracking



Experimental Results: Approximation Error

O Fixing number of restarts

Datasel avg(r) max(r)

TIMERS | LWI2 | Heu-FL | Heu-FT | TIMERS | LWI2 | Heu-FL | Heu-FT
FACEBOOK | 0.005 | 0.020 | 0.009 0.011 0.014 | 0.038 | 0.025 0.023
MATH 0.037 0.057 0.044 0.051 0.085 0.226 0.117 0.179
WIKI 0.053 | 0.086 | 0.071 0.281 0.139 | 0332 | 0.240 0.825
DBLP 0.042 | 0.110 | 0.053 0.064 0.121 | 0.386 | 0.198 0.238

INTERNET 0.152 0.218 0.196 0.961 0.385 0.806 0.647 1.897

O Fixing maximum error 2/ 70~42% Improvement

5 %
=
=
m
.y
w

er of Restarts

I Heu-FL
/\ Heu-FT
e 1 | LT LIS T L

FACEBOOK MATH WIKI DBLP INTERNET




Experimental Results: Analysis

O Syntactic networks: simulate drastic changes in the network structure
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Key problems in dynamic network embedding

- IV. Scalable optimization



Highly-dynamic & Recency-sensitive Data

- WeChat article reading network is large and highly
dynamic
- 8.1 articles and 1400 reading records per second
- The network Is recency-sensitive

- >73% articles died less than 6 hours while no one read again
- Obvious exponential decay for article duration length.

4500 18000 1E+6 -

4000 16000 -

= 3500 < 14000 S :

- S = T

= 3000 $12000 C1E+4 A

g = © _____--_-__:""'Vi

22500 "510000 | 1 l |] S 1E+3 ST

© 2000 l : = 8000 © ¥ = 1768, 8g0- 006 :
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S 1000 = 4000 2 1E+1 !
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Xumin Chen, Peng Cui, Lingling Yi, Shigiang Yang. Scalable Optimization for Embedding Highly-Dynamic and Recency-
Sensitive Data. KDD, 2018.(Applied Data Science track)



Limited resources

- We cannot guarantee convergence in-between every two
timestamps.

- Just do it.

- How to do better?
- Non-uniform resource allocation.
- New edges and nodes worth more resources.

Xumin Chen, Peng Cui, Lingling Yi, Shigiang Yang. Scalable Optimization for Embedding Highly-Dynamic and Recency-
Sensitive Data. KDD, 2018.(Applied Data Science track)



L
Diffused SGD: Weight Diffusion Mechanism

- Difference of embedding vector
IS related to the distance of the
changed edge

- Diffuse through training step

- For step r, if edge (i,j) is
chosen by stochastic method

2-norm of the difference

0 2 4 6
distance to the new edge

For edge (i, j), we have
pij(r) « 7e (i.pi j(r = 1)) ;
for (i,k) € E A k # j, we use
Pik(r) —pix(r—1)+1, (fvPi,j(?” -1)):
and for other edges (I,k) e EAL # i,
prk(r) < prx(r—1);




Boundary and Convergence

- Convergence

The sub-function of loss function is convex and smooth if we fix V(r) and t, and
almost always strongly convex

(t)(U V(r)) = W (uT v — (,tj))

If we sample sub-functions with probablllty proportional to a weight function, the
expecting step size r is bounded by optimal error, initial error and the Lipschitz
constant of the strongly convex function

- Boundary
When edge (i, j) added, difference of optimal function is bounded

H t+1) (0] B (gD _ y® 2 ()2 (0

k=i

C+D? _ 0% 2 Dt ()2
<|w — W +HWU a; ; >vj

2

Vj

Similar boundary if w (r) decreased to w(t) (r+1)

- As the difference is bounded, the number optimal step is also bounded
with the conclusion of convergence

Xumin Chen, Peng Cui, Lingling Yi, Shigiang Yang. Scalable Optimization for Embedding Highly-Dynamic and Recency-
Sensitive Data. KDD, 2018.(Applied Data Science track)
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Experiment: AUC

max . max iteration steps of each time stamp t
c: the less the c Is, the more recency-sensitive the dataset is
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Experiment. Running Time

- For each G, count the running time for every method to a
similar AUC(0.73 in experiment)

timestamp D-5GD- Adam- Adam-
D-SGD SGD-SW
t WT SW GL
1x 10° 0.0234 0.134 0.231 1.84 1.58
1 x 10° 0.0307 0.147 0.238 1.79 1.54
3 % 107 0.0295 0.169 0.261 1.82 1.60
1% 104 0.0347 0.255 0.279 1.88 1.82
3 x 104 0.0336 0.469 0.423 1.98 2.44
1% 10° 0.0441 1.20 0.388 2.15 4.63
3 % 10° 0.0568 3.61 0.498 2.39 10.9
1x 10° 0.0739 15.1 0.668 2.77 32.6
3 % 10° 0.0664 45.9 0.684 2.87 96.2




Summary

- | : Out-of-sample nodes

- DepthLGP = Non-parametric GP + DNN

- Il - Incrementally updating

- DHPE: Generalized Eigen Perturbation

- Ill: Aggregated error

- TIMERS: A theoretically guaranteed SVD restart strategy

- |V: Scalable optimization

- D-SGD: A iteration-wise weighted SGD for highly dynamic data
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