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Networks are ubiquitous

Social Networks
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Biology Networks

Networks are ubiquitous
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Finance Networks

Networks are ubiquitous
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Internet of Things

Networks are ubiquitous
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What is the bottleneck? 

G = ( V, E )

Iterative &

Combinatorial 
Complexity

Coupling Parallelizability

Dependency

among nodes 

Applicability of

ML methods

Links
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Revisit network representation

G = ( V, E ) G = ( V )
Vector Space

 Easy to parallel

 Can apply classical ML methods

generate

embed



Node importance

Community detection

Network distance

Link prediction

Node classification

Network evolution

…
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The ultimate goal of network embedding

in Vector Space

Network Inference
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How?

The vector space should be able to…

Goal 1 

Reconstruct the 

original network

Network Embedding

Goal 2 

Support network 

inference
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Network Embedding

Goal 2 Support network inference

Reflect network 

structure

Maintain network 

Properties

B

A C

Transitivity
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A Survey on Network Embedding

Peng Cui, Xiao Wang, Jian Pei, Wenwu Zhu. A Survey on Network Embedding.

IEEE TKDE, 2018.



• Networks are dynamic in nature

• New (old) nodes are added (deleted)

• New users, products, etc.

• The edges between nodes evolve over time

• Users add or delete friends in social networks, or neurons establish new 

connections in brain networks.

• How to efficiently incorporate the dynamic changes 

when networks evolve?
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Dynamic Networks



• I  : Out-of-sample nodes

• II : Incremental edges

• III: Aggregated error

• IV: Scalable optimization
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Key problems in dynamic network embedding



• High-order proximity

• Critical structural property of networks

• Measure indirect relationship between nodes

• Capture the structure of networks with different scales and sparsity
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Challenge: High-order Proximity

Network Embedding V.S. Traditional Graph Embedding
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Challenge: High-order Proximity

I  : Out-of-sample nodes

II : Incrementally updating 

III: Aggregated error

IV: Scalable optimization

Preserve High-order Proximities

Local Change leads to Global Updating



• I  : Out-of-sample nodes

• II : Incremental edges

• III: Aggregated error

• IV: Scalable optimization
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Key problems in dynamic network embedding



Problem

17

 To infer embeddings for out-of-sample nodes.

 G=(V, E) evolves into G’=(V’, E’),  where V’ = V ∪ V*.

 n old nodes: V = {v1,…,vn},  m new nodes: V* = {vn+1,…,vn+m}

 Network embedding: f: V→Rd

 We know f(v) for old nodes, want to infer f(v) for new nodes.



Challenges

 Preserve network structures

 e.g. high-order proximity

 need to incorporate prior knowledge on networks

 Share similar characteristics with in-sample embeddings

 e.g. magnitude, mean, variance

 requires a model with great expressive power to fit the data well

 Low computational cost
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Specific vs. General

 Specific 

 A new NE algorithm capable of handling OOS nodes.

 General

 A solution that helps an arbitrary NE algorithm handle OOS nodes.

 We propose a general solution.

 But it can be easily integrated into an existing NE algorithm (e.g. 

DeepWalk) to derive a specific algorithm (see the paper).
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Iterative vs. Analytical

 Iterative
 Some algorithms (e.g. DeepWalk) are trained iteratively. It is 

possible to incrementally learn embeddings for OOS nodes.

 Disadvantage: Must find the proper number of iterations with cross 
validation. -> Slow and laborious.

 Analytical
 …

 We want a fast analytical prediction procedure.
 … so that we can handle OOS nodes without much effort.

 The training procedure can be iterative, but it must be finished 
before new nodes even arrive.
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DepthLGP
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• Nonparametric probabilistic modeling + Deep Learning

Jianxin Ma, Peng Cui, Wenwu Zhu. DepthLGP: Learning Embeddings of Out-of-Sample Nodes in 

Dynamic Networks. AAAI, 2018.



Theories

The model can fit arbitrary network embedding.

There exists such a set of parameters, such that: …
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Task I: Classification

23



Task II: Link Prediction
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• I  : Out-of-sample nodes

• II : Incremental edges 

• III: Aggregated error

• IV: Scalable optimization
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Key problems in dynamic network embedding



Problem Formulation

• Suppose that we have learned the node embedding 

based on the edges appearing before time t.

• How to efficiently update these node embedding at time 
t+△t so that the changed network structure caused by the 

newly added/deleted edges during △t can be reflected by 

the updated node embedding?
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The Static Model

• We aim to preserve high-order proximity in the embedding 
matrix with the following objective function：

• where S denotes the high-order proximity matrix of the network

• U and U’ is the results of  matrix decomposition of S.

• For undirected networks, U and U’ are highly correlated.

• Without loss of generality, we choose U as the embedding matrix.
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GSVD

• We choose Katz Index as S because it is one of the most 

widely used measures of high-order proximity. It can be 

formulated as:

• where β is a decay parameter, I is the identity matrix and A is the 

adjacency matrix

• According to HOPE, the original objective function can be 

solved by the generalized SVD (GSVD) method
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Mingdong Ou, Peng Cui, Jian Pei, Wenwu Zhu. Asymmetric Transitivity Preserving Graph Embedding. KDD, 2016.



Problem Transformation

• For static model, we get the GSVD results of the high-

order proximity matrix as the embedding of nodes.

• But it is difficult to incremental updating the GSVD results 

directly.

• Here we propose to transform the GSVD problem into 

generalized eigenvalue problem, so that the incremental 

updating is feasible.
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Dingyuan Zhu, Peng Cui, Ziwei Zhang, Jian Pei, Wenwu Zhu. High-order Proximity Preserved Embedding For Dynamic 

Networks. IEEE TKDE, 2018.



GSVD → Generalized Eigen Problem

• Formally, GSVD can be transformed into the generalized 

eigenvalue problem as:

• where λi are the eigenvalues of S in descending order, and X is a 

matrix which contains the corresponding eigenvectors of λi and 

sgn() is the Sign function.
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Dingyuan Zhu, Peng Cui, Ziwei Zhang, Jian Pei, Wenwu Zhu. High-order Proximity Preserved Embedding For Dynamic 

Networks. IEEE TKDE, 2018.



Generalized Eigen Problem → GSVD

• And the results of the generalized eigenvalue problem 

can also be transformed back into the results of GSVD 

problem:

• where xi is the i-th column of the matrix X, which represents the 

corresponding eigenvectors of λi.

• Based on the problem transformation, we can update the 

results of GSVD by updating the results of generalized 

eigenvalue problem.
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Dingyuan Zhu, Peng Cui, Ziwei Zhang, Jian Pei, Wenwu Zhu. High-order Proximity Preserved Embedding For Dynamic 

Networks. IEEE TKDE, 2018.



Generalized Eigen Perturbation

• We propose generalized eigen perturbation to fulfill the 

task.

• The goal of generalized eigen perturbation is to update X(t) to X(t+1)

• Specifically, given the change of adjacency matrix △A 

between two consecutive time steps, the change of Ma 

and Mb can be represented as:
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Dingyuan Zhu, Peng Cui, Ziwei Zhang, Jian Pei, Wenwu Zhu. High-order Proximity Preserved Embedding For Dynamic 

Networks. IEEE TKDE, 2018.



Complexity Analysis

• Static Model

• the time complexity of the static model is O(Md^2L), where M is the 

number of edges in the network and L is the iteration number.

• Dynamic Model

• Time complexity: 𝑂(𝑇((𝑁+𝑠) 𝑑^2+𝑑^4 ))

• where 𝑇 is the time slice; 𝑁 is the number of nodes; 𝑠 is the number of 

changes and 𝑑 is dimensionality of the embedding.

• Linear with respect to the number of nodes in the network and the 

number of the newly edges.
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Dingyuan Zhu, Peng Cui, Ziwei Zhang, Jian Pei, Wenwu Zhu. High-order Proximity Preserved Embedding For Dynamic 

Networks. IEEE TKDE, 2018.
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Experiments

 Link prediction

 Node Classification

Dingyuan Zhu, Peng Cui, Ziwei Zhang, Jian Pei, Wenwu Zhu. High-order Proximity Preserved Embedding For Dynamic 

Networks. IEEE TKDE, 2018.



• I  : Out-of-sample nodes

• II : Incremental edges

• III: Aggregated error

• IV: Scalable optimization
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Key problems in dynamic network embedding
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Problem: Error Accumulation

A0 U0 V0∑0

𝑆𝑉𝐷

 Eigen perturbation is at the cost of inducing approximation

A1 U1’ V1’∑1’

At Ut’ Vt’∑t’≈

…

⇒
𝑈𝑝𝑑𝑎𝑡𝑒

⇒

𝑈𝑝𝑑𝑎𝑡𝑒

≈

 Problem: error accumulation is inevitable

Error 

Accumulation!
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Solution: SVD Restarts

A0
U0 V0∑0

𝑆𝑉𝐷

 Solution: restart SVD occasionally

U1’ V1’∑1’

Ut
Vt∑t

…

⇒
𝑈𝑝𝑑𝑎𝑡𝑒

⇒

𝑈𝑝𝑑𝑎𝑡𝑒

 What are the appropriate time points?

 Too early restarts: waste of computation resources

 Too late restarts: serious error accumulation

A1

At

At+1
Ut+1’ Vt+1’∑t+1’

𝑆𝑉𝐷
Restart

When?
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Naïve Solution

 Naïve solution: fixed time interval or fixed number of changes

 Difficulty: error accumulation is not uniform

 Validated by preliminary studies
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Existing Method

 Existing method: monitor loss (Chen and Candan, KDD 2014)

 Loss in SVD:

𝒥 = 𝑆 − 𝑈Σ𝑉𝑇 𝐹
2

𝑆: target matrix, 𝑈, Σ, 𝑉 : results of SVD

 Problem: loss includes approximation error and intrinsic loss in SVD

 Preliminary study results:
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Framework: Monitor Margin
 Observation: the margin between the current loss and intrinsic loss in

SVD is the actual accumulated error

 Current loss: 𝒥 = 𝑆 − 𝑈Σ𝑉𝑇
𝐹
2

 Intrinsic loss: ℒ 𝑆, 𝑘 = min
𝑈∗,Σ∗,𝑉∗

𝑆 − 𝑈∗Σ∗𝑉∗𝑇

𝐹

2
, 𝑘: 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙𝑖𝑡𝑦

Ziwei Zhang, Peng Cui, Xiao Wang, Jian Pei, Wenwu Zhu. TIMERS: Error-Bounded SVD Restart on Dynamic 

Networks. AAAI, 2018.
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Framework: Monitor Margin

 Framework: monitor the maximum margin

 Formulation: constrained optimization

 𝑐𝑡: whether to restart; 𝒢: evaluating the margin; Θ: threshold

 Intuition: keep the maximum margin within a threshold while reducing

the number of restarts

Ziwei Zhang, Peng Cui, Xiao Wang, Jian Pei, Wenwu Zhu. TIMERS: Error-Bounded SVD Restart on Dynamic 

Networks. AAAI, 2018.
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A Lower Bound of SVD Intrinsic Loss 

 Idea: use matrix perturbation

 Intuition: treat changes as a perturbation to the original network

 Results: need to calculate top-k eigenvalues of 𝑆 ⋅ Δ𝑆 + Δ𝑆 ⋅ 𝑆 + Δ𝑆 ⋅ Δ𝑆

Ziwei Zhang, Peng Cui, Xiao Wang, Jian Pei, Wenwu Zhu. TIMERS: Error-Bounded SVD Restart on Dynamic 

Networks. AAAI, 2018.
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Time Complexity Analysis

 Conclusion: the complexity is only linear to the local dynamic changes

Ziwei Zhang, Peng Cui, Xiao Wang, Jian Pei, Wenwu Zhu. TIMERS: Error-Bounded SVD Restart on Dynamic 

Networks. AAAI, 2018.
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Experimental Setting

 Baselines:

 Heu-FL: restart SVD after a fixed number of edges changed

 Heu-FT: restart SVD after a fixed amount of time passed

 LWI2 (Chen and Candan, KDD 2014): restart SVD whenever the

reconstruction loss exceeds a preset threshold

 Tasks:

 Approximation error

 Fixed number of restarts

 Fixed maximum error

 Applications

 Link prediction

 Eigenvalue tracking
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Experimental Results: Approximation Error

 Fixing number of restarts

 Fixing maximum error

-50%

27%~42% Improvement
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Experimental Results: Analysis

 Syntactic networks: simulate drastic changes in the network structure

 Robust to sudden changes

 Linear scalability



• I  : Out-of-sample nodes

• II : Incremental edges 

• III: Aggregated error

• IV: Scalable optimization
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Key problems in dynamic network embedding



Highly-dynamic & Recency-sensitive Data

• WeChat article reading network is large and highly 

dynamic

• 8.1 articles and 1400 reading records per second

• The network is recency-sensitive

• >73% articles died less than 6 hours while no one read again

• Obvious exponential decay for article duration length.

Xumin Chen, Peng Cui, Lingling Yi, Shiqiang Yang. Scalable Optimization for Embedding Highly-Dynamic and Recency-

Sensitive Data. KDD, 2018.(Applied Data Science track)



Limited resources
• We cannot guarantee convergence in-between every two 

timestamps.

• Just do it.

• How to do better?

• Non-uniform resource allocation.

• New edges and nodes worth more resources.

Xumin Chen, Peng Cui, Lingling Yi, Shiqiang Yang. Scalable Optimization for Embedding Highly-Dynamic and Recency-

Sensitive Data. KDD, 2018.(Applied Data Science track)



Diffused SGD: Weight Diffusion Mechanism

• Difference of embedding vector

is related to the distance of the

changed edge

• Diffuse through training step

• For step 𝑟, if edge 𝑖, 𝑗 is

chosen by stochastic method



Boundary and Convergence

• Convergence
• The sub-function of loss function is convex and smooth if we fix 𝐕 𝑟 and 𝑡, and 

almost always strongly convex

𝐽𝑖,𝑗
𝑡
𝐔,𝐕 𝑟 = 𝑤𝑖,𝑗

𝑡
𝐮𝑖
T ⋅ 𝐯𝑗 − 𝑎𝑖,𝑗

𝑡
2

• If we sample sub-functions with probability proportional to a weight function, the 
expecting step size 𝑟 is bounded by optimal error, initial error and the Lipschitz 
constant of the strongly convex function

• Boundary
• When edge 𝑖, 𝑗 added, difference of optimal function is bounded

𝜇

2


𝑘≠𝑖

𝐮𝑘∗
𝑡+1

− 𝐮𝑘∗
𝑡

2

2
+

𝜇

2
𝐮𝑖∗

𝑡+1
− 𝐮𝑖∗

𝑡
+

2

𝜇
𝑤𝑖,𝑗

𝑡+1 2

𝑎𝑖,𝑗
𝑡
𝐯𝑗

2

2

≤ 𝑤𝑖,𝑗
𝑡+1 2

− 𝑤𝑖,𝑗
𝑡 2

+
2

𝜇
𝑤𝑖,𝑗

𝑡+1 4

𝑎𝑖,𝑗
𝑡 2

𝐯𝑗
T𝐯𝑗

• Similar boundary if 𝑤𝑖,𝑗
𝑡
𝑟 decreased to 𝑤𝑖,𝑗

𝑡
𝑟 + 1

• As the difference is bounded, the number optimal step is also bounded 
with the conclusion of convergence

Xumin Chen, Peng Cui, Lingling Yi, Shiqiang Yang. Scalable Optimization for Embedding Highly-Dynamic and Recency-

Sensitive Data. KDD, 2018.(Applied Data Science track)



Experiment: AUC

• max 𝑟: max iteration steps of each time stamp 𝑡

• 𝑐: the less the 𝑐 is, the more recency-sensitive the dataset is



Experiment: Running Time

• For each 𝐺 𝑡 , count the running time for every method to  a 

similar AUC(0.73 in experiment)



• I  : Out-of-sample nodes

• DepthLGP = Non-parametric GP + DNN

• II : Incrementally updating 

• DHPE: Generalized Eigen Perturbation 

• III: Aggregated error

• TIMERS: A theoretically guaranteed SVD restart strategy

• IV: Scalable optimization

• D-SGD: A iteration-wise weighted SGD for highly dynamic data
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Summary
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